A Control-Oriented Two-Zone Charge Mixing Model for HCCI Engines With Experimental Validation Using an Optical Engine

نویسندگان

  • Yongsoon Yoon
  • Zongxuan Sun
  • Shupeng Zhang
  • Guoming G. Zhu
چکیده

A control-oriented two-zone charge mixing model is developed to simplify, but to describe mixing of fresh charge and residual gas during the intake stroke. Engine valve timing has a strong influence on the realization of stable homogeneous charge compression ignition (HCCI), since it affects turbulent flow that promotes mixing of fresh charge and residual gas. Controlled auto-ignition of a HCCI engine is achieved by good mixing of fresh charge and residual gas. Therefore, it is useful to develop a mixing model that can be executed in real-time to help extend the operational range of HCCI. For model derivation, the cylinder volume is artificially divided into two zones with a fictitious divider between them. First, the mixed zone consists of fresh charge induced by opening intake valves and some residual gas transferred from the unmixed zone. They are assumed to have been mixed homogeneously so that cold fresh charge gains thermal energy from hot residual gas. Second, the unmixed zone contains the rest of hot residual gas. Mass transfer between them which is forced by a fluid jet is directed from the unmixed zone to the mixed one. Based on the definitions of two zones and interaction between them, a two-zone charge mixing model is derived. To investigate phasing effects of valve timing on charge mixing, comparative simulation was carried out with different valve timings. For experimental validation and calibration of the proposed model, optical engine tests were performed with an infrared (IR) camera, together with GT-power simulation. From good agreement between the model temperature and the estimated temperature from IR images, the model turns out to be useful to describe mixing of fresh charge and residual gas. [DOI: 10.1115/1.4026660]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Integral State Feedback Control of HCCI Combustion Timing

Homogenous Charge Compression Ignition (HCCI) engines hold promise of high fuel efficiency and low emission levels for future green vehicles. But in contrast to gasoline and diesel engines, HCCI engines suffer from lack of having direct means to initiate combustion. A combustion timing controller with robust tracking performance is the key requirement to leverage HCCI application in production ...

متن کامل

Controlling the Power Output and Combustion Phasing in an HCCI Engine

In development of Homogeneous Charge Compression Ignition (HCCI) engines, simultaneous control of combustion phasing and power output has been a major challenge. In this study, a new strategy is developed to control the engine power output and combustion phasing at any desired operating condition. A single zone thermodynamic model coupled to a full kinetic mechanism of Primary Reference Fuels (...

متن کامل

Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation

The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...

متن کامل

Optimization of GRI-mech 3.0 Mechanism using HCCI Combustion Models and Genetic Algorithm

  This paper presents a modeling study of a CNG Homogenous Charge Compression Ignition (HCCI) engine using single-zone and multi-zone combustion models. Authors' developed code could be able to predict engine combustion and performance parameters in closed part of the engine cycle. As detailed chemical kinetics is necessary to investigate combustion process in HCCI engines, therefore, GRI-m...

متن کامل

Performance of Homogenous Charge Compression Ignition (HCCI) Engine with Premixed Methane/ Air Supported by DME for Electrical Power Generation Application

Homogenous Charge Compression Ignition (HCCI) is a mode of combustion in IC engines in which premixed fuel and air are ignited spontaneously. There is a belief that HCCI engines have a great potential to improve fuel consumption and reduce NOx emissions. In this study, a single zone, zero dimensional, thermo-kinetic model has been developed and a computer program with MATLAB software is use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014